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Abstract: Water is an important resource for human beings, yet there are inhabited places tormented
by the scarcity of it. The present study is concerned with places where, seemingly, the best way to get
water is through solar distillers. These places should have, typically, high values of solar irradiation
and a lack of human and economic resources to build and operate complex equipment. A set of sites
scattered around the world was chosen, and then the presumed productivity and thermal efficiency
that solar distillers would have if they were installed at these places was calculated. The mathematical
model used with this purpose assumes steady state operation; the values of mass of water distilled
and distiller efficiency were calculated for every hour, but the results presented are annual averages.
Then, an economic study was made based on local costs of construction materials for the distillers,
the work force, and the prices of water to predict the payback time of solar distillers. Finally, a study
on environmental impact, particularly in terms of greenhouse gas (GHG) emissions, was made to
compare reverse osmosis (RO) with solar distillation. For the sites studied, typical values of annual
water output are in the range of 414 dm3/m2, for Évora, up to 696 dm3/m2, for Faya Largeau; the
minimum efficiency was found for Évora, as 11.5%, and the maximum efficiency was found for
Tessalit, as 15.2%. Payback times are very high, regardless of the areas of the globe where solar
distillers are implanted. Regarding the GHG emissions, solar distillation is preferable to RO.

Keywords: solar desalination; distillers; fresh water; arid areas; GHG emissions

1. Introduction

1.1. Overview

Needless to say, water is of paramount importance to almost all forms of life. Some think tanks
concerned with geostrategic matters have even predicted that in the near future, wars will be waged
because of lack of water.

The regions of the planet already distressed by water shortage are located in vast deserts in the
north of Africa, Namibia, the outback of Australia, central Asia, North and South Americas, and some
tiny islands in the middle of oceans. Moreover, because of climate change such places are appearing
with increasing frequency.

It is not simply water that worries human beings, since water, namely, brackish water, is abundant
and widespread; what worries human beings is the scarcity of fresh water. Yet, there are several ways
to get fresh water from brackish water.

Desalination through distillation is a way to obtain fresh water from brackish or salted water. There
are several methods to desalinate water, grouped by the authors of [1] as thermal and non-thermal;
the current paper focuses only on the solar distillers, which follow a thermal method. The reason for
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this choice stems on the obvious link between water shortage and poverty, and so it seems realistic to
desalinate water through simple and cheap methods, resorting to long-lasting facilities with almost no
maintenance requirements, constructed with materials found locally; a solar distiller may last up to 25
years without major repairs [2].

Ultimately, a solar desalination distiller consists of a cover made of transparent material, placed over
a basin filled with salted water (see Figure 1). According to Belessiotis et al. [1], the cover is normally
roof-shaped, double-shaped, and symmetric, but can also be asymmetric or single sloped, and there
can be two covers. Solar radiation successively crosses the cover; energy is absorbed by the water in
the basin; water evaporates; and vapor rises to the underside of the cover, cooler than the upper side of
the cover, condenses, and then slides, preferably without falling back into the basin, to the gutters
bordering the distiller. The productivity of such installation is assessed by the mass of fresh water
yielded by unit area of the distiller and unit of time.
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Figure 1. Schematic cross section of a typical solar distillation distiller.

The cover is usually of glass, and less often of plastic films. Glass covers have the drawback of
being breakable and, according to the authors of [3], should have a hematite content lower than 0.01%.
Plastic covers can be made of treated polyvinylchloride and tetraphalate-polyethylene; their durability
is less than 15 years, and their adaptability to any desired shape of the distiller is the highest of their
class [1]. Phadatare and Verma [4] found that the productivity of distillers covered with glass is 30% to
35% higher than the productivity for distillers covered with Plexiglas.

The slope of the cover must guarantee that the condensed droplets of water, due to their surface
tension, do not fall back into the basin but slide to the gutters, to be collected; this slope is normally
under 20◦ [2]. The gutters have a slight slope too, just enough to prompt the flow of the distilled water
into a reservoir that feeds consumers of such water. If the basin is shallow, its depth ranges from 10
to 20 mm; if the basin is deep, its depth goes up to 100 mm [4]. The widths are around 2 m and the
lengths can reach 100 m [4].

The floor of the basin bottom liner must be waterproof, free of toxic components, withstand
temperatures up to 90 ◦C, have a thermal absorptivity above 0.95 (see Table 1), and a polished surface.
From Belessiotis et al. [1], it is normally made of one of these materials: concrete, wood impregnated
with epoxy resins, aluminum, magnesium alloys, hard plastic ultraviolet resistant as Plexiglas, etc.
To increase its absorption of solar heat, the upper side of the floor of the basin is covered by one of
these materials: black paint (without volatile components that could evaporate with the water), spongy
materials, butyl rubber, black polyethylene, asphalt, jute, etc.
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The frame that supports the glass/plastic cover has to be robust and cling to the ground to
withstand inclement weather, such as sand storms, but some of its parts must be removable to allow
cleaning and repairs in the distiller.

The bottom and sidewalls of the basin are insulated from the ground to lower, as much as possible,
the heat losses from the distiller. The most suitable insulation materials have low conductivity, are easily
applicable to this kind of basin, withstand the operation of the distiller without deformations, do not
release chemicals harmful into water up to 90 ◦C, and are waterproof. Pumps, storage tanks, pipes,
fittings, etc., are considered ancillary components. Pipes and fittings can be of the same material,
such as polyvinyl chloride (PVC) or any other plastic material not damaged by temperatures up to
90 ◦C; pipes and fittings either of galvanized steel or copper for brackish water, and stainless steel for
distilled water, can be used as well. Normally, plastic materials are cheaper than stainless steel.

The sealing between cover and basin is necessary because the volume limited by the surface of
the water, the underside of the cover, and the tops of the distiller must be air tight to reduce convection
losses. Good sealing materials are easily applied, non-toxic, and have very low absorptivity.

The maintenance requirements of such distillers are cheap and easy. The maintenance consists
mostly in removing leaves, dust, and sand from the cover; occasionally glasses break, and then have to
be replaced. Some parts must be removable to allow cleaning and repairs in the basin.

Such distillers must endure bad weather conditions, such as strong winds and sand storms.
Solar desalination distillers operate in either batch or continuous mode. In batch mode, the amount

of water evaporated from the basin during one day is offset, at the next sunrise, by new salt water.
To avoid scaling or algae, every two or three days the basin is emptied and then refilled with new
saltwater. As the temperature of the water in the basin increases, the productivity of the distiller
increases; this is the reason why during the morning and the night such productivity is low but near
noon it is at a maximum. Besides, shallow basins do not store sensible heat as do deep distillers. The
productivity of distilled water by shallow distillers is in phase with the value of irradiation received by
the distiller and so, from sunset to sunrise, distillation stops; however, as deep distillers store heat,
distillation extends after sunset, although at low rate. In continuous mode, the basin is continuously
fed by saltwater in a way to keep the amount of water in the basin constant.

1.2. Sites with Distillation Distillers

There is a long record of facilities to desalinate water through solar distillation. Some of these
plants are shown in in Table 1.

In 1872, such a desalination plant was built at Chacabuco, (Las Salinas, Chile), which is described
in detail by the authors of [5–7]. It operated for three decades to provide drinking water for animals
used in nitrate mining [5]. Additionally, at Daytona Beach (Florida, USA), a similar facility was built,
operated by Battele Memorial Institute of Cleveland [8–10]. In addition, numerous studies have been
published, such as that by the authors of [11–13].

The Table 2 contains some sites, scattered around the world, which are seemingly suitable to solar
harnessing facilities in general. The purpose of the present work is to assess the performance of specific
distillation plants eventually set up on such sites.
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Table 1. Features of solar distillation plants.

Country Sites Construction Year Basin Area (m2) Production (L/day) Daily Production Per Area (L/m2) Reference

Australia

Muresk I 1963 372 833 2.24 [14–16]
Muresk II 1966 372 833 2.24 [15–18]

Coober Pedy 1966 3159 6359 2.01 [15]
Caiguna 1966 372 776 2.09 [19]

Hamelin Pool 1966 557 1211 2.17 [10,20]
Griffith 1967 413 908 2.20 [10,20]

Cabo Verde Santa Maria 1965 743 2120 2.85 [10,20]

Caribbean Petit St. Vincente 1967 1709 4921 2.88 [19]
Haiti 1969 223 757 3.39 [10,20]

Chile Las Salinas 1872 4459 14,763 3.31 [6,21]
Quillagua 1968 100 401 4.01 [22]

Spain Las Marinas 1966 869 2574 2.96 [23]

USA

Daytona Beach 1 1959 228 530 2.32 [24]
Daytona Beach 2 1959 216 379 1.75 [24,25]
Daytona Beach 3 1961 246 568 2.31 [25]
Daytona Beach 4 1963 149 606 4.07 [10,20]

Greece

Symi 1964 2687 7571 2.82 [26,27]
Aegina 1965 1490 4240 2.84 [28]
Salamis 1965 388 1098 2.83 [20]
Patmos 1967 8640 26,119 3.02 [29,30]
Kimolos 1968 2508 7571 3.02 [20]
Nisiros 1969 2044 6057 2.96 [20]

India Bhavnagar 1965 377 833 2.21 [31,32]
Mexico California 1969 95 379 3.99 [20]

Tunisia Chakmou 1967 439 530 1.21 [20]
Mahdia 1968 1301 4164 3.20 [20]

USSR Turkmenistan 1964 599 1628 2.72 [33]
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Table 2. Sites studied at the present work chosen to assess their suitability to desalination through solar
distillation plants.

Sites Country Latitude (◦) Longitude (◦) Altitude (m) Tm Annual (◦C) G Annual (KWh m−2 y−1)

Al Fashir Sudan 13.6 25.3 729 25.0 2482
Almeria Spain 36.8 −2.3 21 18.7 1880

Atar Mauritania 20.5 −13.0 231 27.0 2404
Abu Rudeis Egypt 28.9 33.1 8 23.7 2223

Bilma Niger 18.7 12.9 357 26.4 2428
Dakha Western Sahara 23.7 −15.9 10 19.7 2005
Dikhil Djibouti 11.1 42.3 490 25.3 2584
Évora Portugal 38.5 −7.8 246 16.3 1849

Faya Largeau Chad 17.9 19.1 235 24.4 2456
Malakal South Sudan 9.5 31.6 394 26.7 2351

Massawa Eritrea 15.6 39.4 10 29.3 2184
Mekele Ethiopia 13.4 39.5 2254 16.5 2386

Mogadishu Somalia 2.0 45.3 3 27.0 2239
Santiago Cabo Verde 14.9 −23.5 95 24.6 2245
St. Louis Senegal 16.0 −16.4 2.7 25.19 2174
Tessalit Mali 20.2 0.97 494 27.8 2440

2. Analyses

The solar distillation process to obtain water was analyzed in three respects: thermal efficiency,
economics, and carbon emissions.

2.1. Thermal Efficiency

Belessiotis et al., Cooper, Duffie, and Beckman [1,2,5], among others, proposed two energy
equations, one for the basin and another for the cover, with almost the same terms.

In the current study, the energy equation applied to the basin is

Gτcαw −Qevap −Qrad(b−c) −Qconv(b−c) −Qgrd = (Mc/A)b
dTb
dt

, (1)

where the subscripts c, w, b, and grd stand for cover, water, basin, and ground, respectively; the energy
equation applied to the cover, neglecting the variation of internal energy and the solar energy absorbed
by it, is

Qevap + Qrad(b−c) + Qconv(b−c) = Qconv(c−a) + Qrad(c−a), (2)

where the subscript a stands for the atmosphere. In the right-hand side of Equation (2), the sky is
assumed as a plate.

Normally, for shallow and well-insulated basins, a steady-state operation can be assumed and,
accordingly, the right-hand side of Equation (1) can be neglected.

According to Cooper [34], the total (all the wavelengths) and directional (angles of incidence of 0◦,
30◦, 45◦, and 60◦) values of absorptivity, transmissivity, and reflectivity for the glass cover, the water
in the basin and the basin liner are given at Table 3. The angle of incidence, θ, is measured from the
normal to the surface.

Dunkle [35] proposes that
Qrad(b−c) = 0.9σ

(
T4

b − T4
c

)
, (3)

assuming that both the water surface and the lower side surface of the cover are diffuse and gray; the
value of 0.9 includes the view factor between these surfaces and their emissivities.

For the evaporation
Qevap = 9.15× 10−7h′c(pwb − pwc)h f g, (4)

with
h′c = 0.884

{
(Tb − Tc) + [(pwb − pwc)/(2016− pwb)]Tb

}1/3, (5)
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and the mass of water evaporated per unit of time is

.
Mevap = 9.15× 10−7h′c(pwb − pwc). (6)

For the convection between the basin and the lower side surface of the cover

Qconv(b−c) = h′c(Tb − Tc). (7)

For the convection between the upper surface of the cover and the atmosphere, which is normally
a mixture of free and forced convection, McAdams recommends to adopt the convection coefficient as
the maximum between 5 Wm−2K−1 and the value obtained with 8.6V0.6Lc

−0.4; so

h(c−a) = max.
[
5; 8.6V0.6L−0.4

c

]
, (8)

with V representing the velocity of wind, expressed in meters per second, and the characteristic length,
Lc, representing the cube root of the volume of the distiller, expressed in meters. Then

Qconv(c−a) = h(c−a)(Tc − Ta). (9)

The radiation exchange between the upper face of the cover and the sky is

Qrad(c−a) = εcσ
(
T4

c − T4
sk

)
. (10)

The temperature of the sky was obtained by

Tsk = Ta
[
0.711 + 0.0056Twb + 0.000073T2

wb + 0.013 cos(15t)
]2

. (11)

The value of Qgrd is negligible, since it depends on the construction quality of the basin, which can
be controlled by the builder of the basin; a well-insulated basin is usually assumed.

The performance of the distiller was assessed through the efficiency calculated with

η =
.

Mevap/G. (12)

2.2. Economics

In order to carry out the feasibility study of a project, it is very important to make an economic
analysis of it. Firstly, this requires predicting expenditures (investments, costs, and expenses) and
revenues and, secondly, the analysis of some economic indicators (TCO, NPV, IRR, and payback period).
The presently studied facilities consist of distillers with an area arbitrarily set as 1 m2, and therefore
the costs considered are per square meter of installation. Costs of components were obtained through
the CYPE, a price generator digital platform [36].

Total cost of ownership (TCO) is a financial estimate designed to evaluate direct and indirect costs
related to purchase and capital expenditures (CAPEX), in addition to operating and maintenance costs
(OPEX), and can be expressed through

TCO = CAPEX + OPEX. (13)

CAPEX covers only the cost of building the equipment. OPEX includes maintenance and operating
costs, considering an annual inflation rate of 2% [37,38].

Considering that the equipment has a lifespan of 20 years, the cost of water per 1 m3 is given by

cost
m3 = TCO/

(
Mevap-yearly × n

)
, (14)
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with n representing the operation years and Mevap-yearly representing the mass of fresh water obtained yearly.
The net present value (NPV) is the balance of all cash inflows and outflows over the estimated

useful life of a project, updated to the present moment, considering an inflation rate for the stipulated
period. NPV can be calculated using

NPV =
∑n

n=0
FanRn −

∑n

n=0
FanGn, (15)

where Fan is the update factor for period n, Rn the revenue for period n, and Gn the expenditure for
period n.

The value of Fan is calculated through

Fan =
1

(1 + i)n , (16)

where i is the inflation rate and n the years of operation.
The internal rate of return (IRR) represents the return on an investment, expressed as a percentage

rate. The IRR can be viewed as the rate required for NPV to be zero, and calculated by

NPV = 0 = Initial Investment +
∑n

t=1

Fn

(1 + IRR)n , (17)

where Fn is the cash flow for period n.
The payback period represents the time it will take a project to generate returns that equal the

investment, and can be calculated using

Payback =
Investment

Revenue/year
. (18)

Table 3. Total and directional values of absorptivity, transmissivity, and reflectivity for the glass cover,
the water in the basin, and the basin liner; these values are presented in % [34].

Angle of
Incidence, θ 0◦ 30◦ 45◦ 60◦

Glass cover

Absorptivity, α 5 5 5 5
Transmissivity, τ 90 90 89 85

Reflectivity, ρ 5 5 6 10

Water in the basin

Absorptivity, α 30 30 30 30
Transmissivity, τ 68 68 67 64

Reflectivity, ρ 2 2 3 6

Basin bottom (liner)

Absorptivity, α 95 95 95 95
Transmissivity, τ 0 0 0 0

Reflectivity, ρ 5 5 5 5

2.3. Carbon Emissions

The parameter analyzed was the CO2e emissions, defined by IEA 2018, corresponding to the
production of 1 m3 of fresh water. This parameter only encompasses the CO2e produced by the
operation of getting fresh water. Two alternative scenarios were studied: (i) the production of water
through reverse osmosis (RO), currently the most widespread desalination process [39], and (ii) the
production of water through solar distillation, the process presently studied. Obviously, RO consumes
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electric energy unlike solar distillation. Other methods to get fresh water were excluded from this
analysis due to their technical complexities or operational costs, which renders them inappropriate for
small and poor communities, the main target of this study.

Table 4 contains values of total emissions of CO2e and of the total electricity produced by the
countries, where the sites studied are located. Specific emissions of CO2e were calculated with both
these values; these specific emissions depend on the energy mix of the country. Whenever there were
no reliable values either of CO2e emissions or the amount of electricity generated, counterpart values
of the nearest country were assumed, such as in the cases of Atar, Dikhil, and Faya Largeau.

Table 4. Emissions of CO2e.

Sites CO2e Emissions
(Mton)

Electricity
Generated (TWh)

Specific Emissions of CO2e
kgCO2e

/kWh Ref.

Al Fashir 6.2 15.5 0.400 [41]
Almeria 66.7 273.4 0.243 [41]

Atar - - 0.625 1 -
Abu Rudeis 89.3 188.2 0.474 [41]

Bilma 0.5 0.6 0.833 [41]
Dakha 21.6 32.8 0.658 [41]
Dikhil - - 1.000 2 -
Évora 18.1 57.7 0.314 [41]

Faya Largeau - - 0.400 3 -
Malakal 0.5 0.5 1.000 [41]

Massawa 0.4 0.4 1.000 [41]
Mekele 0 13.9 0 [41]

Mogadishu - - 1.000 2 -
Santiago 0.2 0.4 0.490 [40]
St. Louis 3.0 4.8 0.625 [41]
Tessalit - - 0.625 1 -

1 Value from Senegal, 2 value from Eritrea, and 3 value from Sudan.

Besides, in Cabo Verde, in the year of 2018 [40], the consumption of electricity to obtain potable
water through RO was 3.909 kWh/m3 (31,684,028 kWh to get 8,106,322 m3 of potable water); it is
plausible to assume this same value for other countries, whenever RO is concerned.

3. Results

3.1. Thermal Efficiency

Results concerning output were obtained for the locations indicated at Table 2, with climatic data
drawn from reference [42], equations (1) and (2), and the assumption of steady state operation for the
basin and the cover.

Hourly values of Qevap,
.

Mevap, Qconv(b−c), h(c−a), Qconv(c−a), and Qrad(c−a) were calculated with
hourly values of V, Ta, Tsk, and Twb drawn from the referred climatic site and with the above-mentioned
equations, from (1) to (11). The values of absorptivity of water, transmissivity, and reflexivity of the glass
cover were assumed as the averages of the homologous values contained at Table 3. The unknowns
were the temperature of the basin, Tb, and the temperature of the cover, Tc, determined by a solver for
nonlinear equations. Lastly, hourly values of the efficiency of the solar distiller, η, were obtained as well.
Annual values shown in the following graphs were calculated with the counterpart hourly values.

Figure 2 shows the annual output of distilled water for the sites studied, whereas Figure 3 shows
the annual efficiency of solar distillation plants for the same sites.
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Among the chosen sites of Table 2, the most and the least suitable for setting up solar distillation
plants are, respectively, Faya Largeua and Évora. For both these sites, Figure 4 shows the monthly
output of water and includes the monthly average air temperature, whereas Figure 5 shows the
monthly output of water and includes the monthly average value of G.
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Figure 4. Monthly output of distilled water for Faya Largeua and Évora and the corresponding monthly
average air temperature.
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Figure 5. Annual output of distilled water for Faya Largeua and Évora and the corresponding monthly
average value of G.

Figure 6 shows for the site with the highest water output, Faya Largeua, the monthly values of
water output for two different situations: the minimum value and the actual value of the convection
coefficient h(c−a) (see Equation (8)).

It is clear from previous figures that the productivity and the efficiency of solar distillers are higher
for higher values of either irradiation G or average temperature Tm. Besides, the productivity and
the efficiency of solar distillers increase as the convection coefficient h(c−a) drops. Generally, for the
sites studied, when h(c−a) drops from the actual to the minimum value, the increase of productivity is
around 10%: for the case of Faya Largeua, such an increase is 12.3%. Thus, some expedients should be
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adopted to decrease, or even eliminate, the velocity of the wind over the distillers. Such expedients
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and h(c−a) obtained with the local wind speed measured.

3.2. Economics

An economic analysis was made for the sites referred to in Table 2, with the more important
results presented in Table 5. The water annual production was drawn from Figure 2. The average
costs of water for consumers were obtained from potable water suppliers: TCO, NPV for twenty
years, IRR, and payback result, respectively, from Equation (12), Equation (14), Equation (16),
and Equation (17).

It is important to stress that the costs of water presented in Table 5 are subsidized by the
abovementioned governments.

Values of Table 5 are, at least, discouraging for poor communities of the Third World tormented
by a lack of drinkable water.

Clearly, water can be obtained with distillers made with cheap materials found locally and by
local unskilled people; such distillers will be affordable by poor communities, but their performance
will be poor. Meanwhile, the performance and economic analyses of such distillers are impossible to
calculate because (i) there is an enormous array of materials more or less suitable for the construction of
distillers, and consequently, more or less expensive, and (ii) the unskillfulness of people is disputable.

So, the results presented in Table 5, however discouraging, were obtained with the underlying
scope to obtain distiller with the highest efficiency, manufactured with prices current at Cabo Verde.

Anyway, from the values of payback of Table 5, it is clear that solar distillers are only suitable for
domestic water production where other production methods are unavailable.
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Table 5. Economic analysis summary.

Location Average Cost of
Water (€/m3)

Water Annual
Production (L/m2)

TCO 20
Years (€/m2)

NPV 20
Years (€/m2) IRR (%) Payback

(Years)

Al Fashir 0.766 1 642.6

270.1

−234.40 - 369
Almeria 0.699 [43] 420.1 −247.30 - 619

Atar 5.952 2 [44] 644.4 −177.85 −22.1 47
Abu Rudeis 0.167 [45] 545.4 −251.27 - 1996

Bilma 0.218 [46] 651.4 −250.27 - 1280
Dakha 0.460 [47] 457.9 −248.65 - 810
Dikhil 0.448 [48] 680.9 −247.07 - 596
Évora 0.507 [49] 414.4 −248.93 - 865
Faya

Largeau 0.766 [50] 695.8 −242.60 - 341

Malakal 0.766 1 619.4 −243.75 - 383
Massawa 0.448 3 680.9 −247.07 - 596
Mekele 0.448 3 560.5 −248.13 - 724

Mogadishu 0.448 3 583.0 −247.93 - 696
Santiago 4.23 4 [40] 562.5 −206.40 - 76
St. Louis 5.952 5 551.6 −188.67 - 55
Tessalit 0.207 [51] 683.0 −250.28 - 1286
1 Cost from Chad, 2 supply in 200 L drums, 3 cost from Djibouti, 4 auto tank supply, 5 and cost from Mauritania.

3.3. Carbon Emissions

Table 6 contains, for the set of sites studied, the values of Greenhouse Gas (GHG) that would be
emitted if the production of the water, instead of being through the solar distillers proposed in this
study, was by RO. It is considered that the operation of solar distillers does not emit GHG. The water
annual production was drawn from Figure 2, and the consumption of electricity to obtain potable
water through RO was assumed 3909 kWh/m3, the same as in Cabo Verde.

Table 6. Carbon emissions analysis summary.

Location Water Annual
Production (L/m2)

RO Desalinization
Energy Consumption

(kWh/m3)

GHG Avoid 20 Years
(kgCO2e

/m2)

Al Fashir 642.6

3909

20.1
Almeria 420.1 8.0

Atar 644.4 31.5
Abu Rudeis 545.4 20.2

Bilma 651.4 42.4
Dakha 457.9 23.6
Dikhil 680.9 53.2
Évora 414.4 10.2

Faya Largeau 695.8 21.8
Malakal 619.4 48.4

Massawa 680.9 53.2
Mekele 560.5 0

Mogadishu 583.0 45.6
Santiago 562.5 21.5
St. Louis 551.6 27.0
Tessalit 683.0 33.4

Clearly the environmental impact of RO is a drawback of this process when compared with
solar distillation.
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4. Conclusions

The scarcity of water is a problem of a growing number of regions of the world, which cumulatively
are the poorest regions. Solar distillation has higher efficiency as irradiation increases and thermal
losses decrease, which means that it is an acceptable desalination process for arid and hot climates.

Typical values of annual water output are in the range of 414 dm3/m2 for Évora and up to
696 dm3/m2 for Faya Largeau; the minimum efficiency found for Évora was 11.5%, and the maximum
efficiency found for Tessalit was 15.2%.

However, the payback times for high performance solar distillers are very high, which excludes
solar distillation when economic criteria are the only factors to be considered.

Solar distillation is far better than RO, when the environmental impact of GHG is considered. For
remote and poor communities, solar distillation is to be considered.

So, as guidelines to decide if solar distillation to obtain fresh water it is important to get positive
answers to the following questions:

• Remote places;
• Salt water available;
• High solar irradiation;
• Population with low income;
• Population with poor skills;
• Off-grid places.

Finally, the present study addresses the shortage of fresh water in the growing number of places
that comply with the previous guidelines.
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published version of the manuscript.
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Abbreviations

List of Symbols
A Area of the basin m2

CO2e Carbon dioxide equivalent emissions
c Specific heat J kg−1 K−1

CAPEX Capital expenditure €
F Casflow €
G SolaIrradiation W m−2

GHG Grehouse gas
i Inflion rate %
IRR Internal rate of return %
h Convection coefficient W m−2 K−1

hfg Latent heat of evaporation J kg−1

Lc Characteristic length m
M Mass kg
.

M Mass flow rate kg s−1

NPV Net Present Value €
n Period year
OPEX Operational Expenditure €
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p Pressure mmHg
PB Payback year
PVC Polyvinyl chloride
Q Heat rate W m−2

R Revenue €
RO Reverse osmosis
T Temperature K
t Time s
TCO Total cost of ownership €
V Wind velocity m s−1

Subscripts
a Atmosphere
b Basin
c Cover
conv Convection
d Distilled
evap Evaporation
grd Ground
m Average
n Period year
rad Radiation
sk Sky
w Water
wb Wet bulb
Greek symbols
α Absorptivity
η Performance
θ Angle of incidence
ρ Reflectivity
σ Stefan-Boltzmann constant J m−2 s−1 K−4

τ Transmissivity
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